LARGE-SCALE DRIVERS OF CLOUD, ATMOSPHERIC STRUCTURE, AND SURFACE VARIABILITY IN ALASKA USING SELF ORGANIZING MAPS

Matthew Shupe and Michael Gallagher
University of Colorado / NOAA

Background

Self Organizing Maps

- Groups similar data vectors into generalized patterns ("nodes")
- Nodes closer to each other are similar, distant are dissimilar
- Input: daily SLP anomaly patterns from NCEP-NCAR reanalysis
- Output: grid of generalized patterns and day list for each node

Data Used Here

- Oliktok: 9/2013 6/2017
- Barrow: 1/1998 6/2017
- Seasonal background subtract

Master SOM

5x4 is a trade-off between uniqueness and statistical robustness

Seasonal Occurrence

Master SOM

Pressure

		Bar	rrow, Pressure [n	nb]				Olii	ktok, Pressure [r	nb]	
1	1025.8 1 013.4 8.2 274 998.8	1026.4 1016.2 7.2 238 1004.0	1033.9 1 021.4 8.3 258 1006.9	1037.7 1024.3 9.4 235 1009.3	1043.2 1024.5 10.6 216 1008.2	1	1027.5 1015.3 8.3 73 1000.8	1027.7 1018.0 7.8 66 1004.3	1035.4 1021.7 9.5 77 1007.8	1038.9 1024.7 9.8 85 1006.7	1034.0 1022.4 7.5 48 1006.1
2	1023.5 1013.5 6.6 293 1001.3	1023.7 1015.5 6.3 266 1003.8	1033.6 1020.1 8.5 198 1007.1	1035.9 1023.0 8.9 157 1007.6	1042.4 1025.0 10.3 231 1008.1	2	1022.1 1012.8 5.2 61 1003.4	1022.9 1013.9 5.9 71 1002.7	1032.4 1016.6 8.6 49 995.8	1035.6 1021.9 8.4 47 1007.4	1035.3 1020.8 8.9 56 1006.5
3	1024.8 1 011.3 7.6 380 999.3	1020.1 1010.7 6.2 203 999.6	1024.1 1014.4 6.1 223 1003.8	1036.5 1019.4 8.7 209 1007.2	1040.1 1022.5 8.9 1.36 1009.1	3	1023.0 1011.7 7.2 120 999.7	1019.4 1010.0 6.2 48 995.8	1024.0 1013.3 6.0 67 1002.1	1030.7 1018.7 7.1 47 1007.1	1042.4 1024.9 9.5 44 1010.9
4	1019.6 1006.5 7.9 247 993.1	1018.5 1005.8 8.3 283 990.7	1023.1 1008.5 8.8 346 992.2	1022.5 1009.8 8.8 245 995.7	1031.7 1014.3 9.8 350 998.9	4	1015.8 1005.7 7.6 59 995.0	1016.5 1004.3 8.1 55 988.0	1017.9 1007.2 7.8 94 991.1	1021.9 1010.0 7.5 69 995.0	1028.9 1012.5 9.1 141 997.1
	Α	В	С	D	Ε		Α	В	С	D	E

Cloud Frac

	Barrow, Cloud Fraction (ceilo) [%]						
1	100.00	100.00	100.00	100.00	100.00		
	73.21	74.59	64.41	57.36	55.35		
	29.67	27.59	35.60	34.63	35.33		
	346	279	342	298	300		
	4.94	15.60	0.30	0.26	0.30		
2	100.00	100.00	100.00	100.00	100.00		
	80.91	75.70	69.07	63.29	58.42		
	27.41	30.35	35.47	34.00	33.84		
	379	335	242	182	306		
	11.65	5.46	1.15	3.20	0.26		
3	100.00	100.00	100.00	100.00	100.00		
	82.19	84.40	78.97	73.95	59.85		
	26.02	24.72	30.11	32.26	34.83		
	502	260	274	262	162		
	15.76	20.59	5.08	2.09	0.80		
4	100.00	100.00	100.00	100.00	100.00		
	87.76	85.63	82.35	74.29	65.98		
	20.48	24.52	27.09	31.82	33.32		
	315	350	431	311	458		
	34.70	23.81	16.63	5.94	3.24		
	А	В	С	D	E		

		Oliktok, C	Cloud Fraction (c	eilo) [%]	
1	100.00	100.00	100.00	100.00	100.00
	73.99	68.48	66.37	62.23	52.14
	26.58	32.04	36.59	31.34	34.60
	74	66	75	80	48
	10.41	3.71	0.02	3.80	0.02
2	100.00	100.00	100.00	99.85	100.00
	81.60	75.26	71.43	61.07	63.04
	24.97	30.76	32.65	31.58	34.29
	62	69	49	47	53
	21.87	0.28	9.07	0.02	1.96
3	100.00	100.00	100.00	100.00	100.00
	78.70	78.22	84.99	77.22	64.32
	26.41	25.74	24.09	30.29	32.95
	120	50	64	45	42
	16.81	24.64	24.00	5.86	0.06
4	100.00	100.00	100.00	100.00	100.00
	82.88	86.08	79.30	70.28	63.30
	25.50	22.26	29.12	32.67	33.69
	56	52	94	67	136
	12.12	41.45	13.23	0.56	2.83
	Α	В	С	D	Ε

$Temperature\ Anom$

		Barrow, T	emperature Ano	maly [C]	
1	11.68	11.92	10.89	12.33	10.69
	2.70	2.77	2.16	0.90	-0.47
	5.05	4.78	5.08	6.51	6.51
	274	238	258	235	216
	-3.71	-3.55	-5.70	-8.91	-9.83
2	6.14	6.20	7.32	7.76	7.90
	0.55	0.26	-0.54	-0.29	-0.86
	3.44	3.38	4.59	5.13	5.28
	292	263	198	156	231
	-4.27	-4.61	-8.72	-8.81	-9.65
3	5.40	4.15	4.62	6.18	6.89
	-0.18	-0.17	-0.86	-1.21	-1.13
	3.26	3.05	3.22	4.32	5.15
	380	203	223	209	136
	-4.64	-3.96	-6.73	-9.63	-10.43
4	4.24	4.36	6.92	6.27	8.77
	- 0.83	-1.22	-0.46	-1.37	-0.53
	2.86	3.71	4.22	4.77	5.79
	247	283	346	244	350
	-5.08	-8.11	-8.86	-10.11	-10.52
	А	В	С	D	Ε

		Oliktok, 1	Temperature Ano	maly [C]	
1	9.99	9.87	13.27	12.53	8.53
	2.13	1.52	1.64	1.74	-0.94
	5.11	4.58	5.47	5.66	6.01
	73	66	75	81	48
	-6.36	-7.59	-6.71	-7.57	-12.86
2	7.94	4.56	6.21	7.90	7.20
	0.73	-0.44	-0.56	-0.46	-0.88
	4.00	4.18	4.70	5.63	6.01
	61	70	48	47	53
	-3.52	-6.12	-11.58	-10.08	-11.45
3	6.88	5.21	3.80	3.97	8.28
	0.01	- 0.21	- 0.96	-0.68	-1.67
	3.45	3.11	3.04	3.63	6.50
	120	48	67	47	44
	-4.17	-4.58	-5.64	-9.62	-14.61
4	3.62	3.85	5.79	6.12	8.10
	- 0.41	-0.83	-0.30	-0.47	- 0.51
	2.98	3.66	4.04	5.29	5.97
	59	53	94	68	140
	-4.29	-7.23	-8.41	-11.54	-11.26
	А	В	С	D	Ε

LWDAnom

		Barrow	, LWD Anomaly [W/m²]	
1	62.19	60.59	63.68	74.80	60.34
	9.42	11.33	5.90	5.74	-0.25
	29.85	30.06	34.48	37.05	35.26
	385	296	366	323	321
	-40.03	-40.02	-49.99	-47.88	-47.60
2	38.52	38.96	53.65	50.18	50.92
	2.72	0.13	-2.55	-5.02	-6.96
	24.57	26.22	31.09	29.27	31.20
	416	369	260	200	323
	-43.35	-49.21	-52.19	-51.02	-52.20
3	29.03	32.22	35.01	42.83	48.26
	-1.28	0.80	- 1.98	-3.64	-7.36
	21.24	21.20	25.61	28.72	30.65
	550	281	300	277	179
	-40.63	-36.61	-49.83	-51.79	-52.07
4	28.45 - 4.55 23.25 356 -50.52	37.18 - 2.94 26.28 381 -47.62	45.66 -0.85 28.38 494 -51.28	47.58 - 3.06 31.71 347 -55.21	53.70 -1.17 35.18 478 -52.77
	А	В	С	D	Ε

		Oliktok	, LWD Anomaly [W/m²]	
1	46.19	48.44	49.49	63.42	55.81
	8.43	2.92	3.19	2.53	-9.23
	27.11	27.80	34.35	33.10	29.82
	74	66	76	83	47
	-43.94	-43.79	-49.76	-51.84	-53.35
2	40.77	31.55	49.44	28.46	46.96
	7.01	1.96	4.28	- 10.29	-1.36
	20.62	24.92	26.16	27.84	32.98
	60	68	47	47	56
	-27.91	-48.25	-49.84	-53.70	-63.06
3	26.71	18.34	25.93	35.73	43.56
	-2.17	-4.52	-0.05	-1.30	-2.25
	20.63	23.58	23.78	22.13	31.59
	120	44	64	42	42
	-40.77	-64.01	- 50.26	-43.38	-66.88
4	21.80	34.54	40.68	46.73	46.15
	-2.54	3.24	-0.50	-0.27	-2.37
	18.64	24.65	23.90	30.32	33.70
	60	50	91	69	139
	-43.56	-42.13	-45.75	-56.37	-53.52
	А	В	С	D	Ε

Q profiles

Cloud Frac Anom

		Barrow, Cloud	Fraction Anoma	ly (ceilo) [%]	
1	30.19 -5.23 29.61 346 -69.41	31.27 -1.87 27.44 279 -56.11	39.20 -7.53 33.46 342 -68.00	41.48 -5.77 32.19 298 -59.26	40.35 -7.03 33.44 300 -59.03
2	25.91	30.99	36.36	40.31	40.87
	0.81	-2.61	-3.72	- 1.81	-2.99
	25.38	28.15	30.27	30.32	32.56
	379	335	242	182	306
	-61.38	-61.32	-62.24	-56.81	-57.92
3	26.83	29.11	31.00	37.23	39.12
	2.61	2.78	1.17	3.07	- 3.24
	23.50	23.21	26.83	27.09	30.57
	502	260	274	262	162
	-53.76	–55.89	-59.39	–51.29	-57.80
4	29.81	34.14	42.30	39.14	41.15
	7.36	5.04	6.24	4.81	1.19
	18.11	22.32	23.76	26.99	31.77
	315	350	431	311	458
	-29.11	-45.25	-44.20	–52.53	-56.83
	Α	В	С	D	E

		Oliktok, Cloud	Fraction Anoma	ly (ceilo) [%]	
1	24.11 -1.38 25.12 74 -54.81	33.40 -7.60 30.98 66 -64.53	41.00 -7.16 36.14 75 -75.66	36.18 -2.99 30.40 80 -59.96	38.87 -11.22 32.87 48 -57.33
2	33.54	36.36	33.82	30.72	39.28
	3.86	0.33	-0.65	-6.98	1.32
	22.72	27.45	28.45	28.02	32.82
	62	69	49	47	53
	-50.20	-61.52	-53.52	-60.38	-57.90
3	21.11	27.15	35.98	36.38	44.43
	- 0.29	-3.13	7.40	3.83	4.07
	23.99	26.60	22.56	23.95	30.76
	120	50	64	45	42
	-62.14	-61.91	-42.01	-50.50	-53.28
4	28.79	42.68	38.19	44.66	40.28
	2.11	7.61	5.76	4.98	- 0.68
	24.32	22.97	25.28	30.88	31.87
	56	52	94	67	136
	-60.40	-30.91	-50.13	-58.98	-56.82
	Α	В	С	D	Ε

LWP Anom

		Barrow	, LWP Anomaly [[g/m²]	
1	142.61	91.08	90.45	135.46	54.05
	- 1.85	- 7.11	-4.18	13.09	4.13
	87.46	68.94	71.83	94.59	65.04
	290	247	276	246	236
	-93.10	-87.56	-71.80	-34.50	-30.72
2	138.96	90.50	65.12	59.83	35.40
	1.48	-8.80	-9.61	- 1.85	-5.44
	73.75	61.32	39.85	44.56	20.24
	339	285	213	144	258
	-75.16	-76.88	-70.13	-50.60	-31.60
3	131.12	111.57	80.07	67.04	78.61
	1.49	1.36	- 3.48	-2.52	-0.04
	74.87	77.15	47.50	37.90	32.37
	435	230	248	222	1.48
	-73.84	-82.23	-71.21	-50.17	-34.73
4	131.04	120.47	92.28	88.93	54.14
	8.81	3.25	3.66	2.29	0.06
	69.83	55.39	59.65	44.26	35.70
	283	313	363	258	379
	-70.33	-65.61	-64.43	-42.24	-32.15
	А	В	С	D	E

	-20 -15 -12 -5 -4 0 4 6 12 16 20 1"							
		Oliktok	, LWP Anomaly [g/m²]				
1	84.58 - 8.17 51.30 73	54.21 -10.68 52.47 64 -67.53	108.66 - 3.83 53.42 74 -68.63	51.73 -2.58 25.93 73 -35.27	19.78 -6.63 13.53 46 -35.96			
2	161.09 7.91 87.99 57 -87.77	99.69 - 0.37 44.71 64 -55.64	51.37 -6.87 26.26 43 -48.80	28.67 -7.11 33.56 45 -64.27	52.48 5.08 24.39 38 -21.69			
3	159.04 3.60 73.54 117 -73.10	79.05 -15.92 51.96 42	86.20 7.29 46.83 55 -49.43	76.68 5.45 46.25 39 -44.93	17.14 - 1.65 19.24 34 - 19.05			
4	125.57 -0.96 66.53 55 -68.01	155.30 19.15 80.58 47 -58.57	88.99 5.41 50.32 85 -47.31	62.01 3.62 31.44 63 -43.29	67.49 2.78 37.05 122 –31.22			
	А	В	С	D	Ε			

Together

What does it mean?

- Warm anomalies in OLI/NSA with low over Kamchatka Peninsula, Russia
- Driven by (1) enhanced LWD from warm moist air; (2) enhanced SWD from decreased clouds.
- OLI surface temperature anomalies are strongly correlated with LWD anomalies (o.74), moderately correlated with PWV (o.41), but weakly correlated with cloud occurrence (o.27) or LWP (o.18)
- Future work: more parameters, seasonal aspects, impact of sea ice, "trajectories" through SOM space